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Abstract

For elastoplastic trusses under cyclic loads\ a method is presented for _nding the steady!state limit\
which bounds convergence and divergence of plastic deformations[ Using Taylor!series expansion\ a new
incremental theory is formulated for tracing the sequence of steady states generated under an idealized cyclic
loading program with continuously increasing amplitude[ The sequence is regarded as a continuous path[
The steady!state limit is found as the _rst limit point of the continuous path[ Geometrical and material
nonlinearities are taken into account using the Total Lagrangian formulation and the bi!linear kinematic
hardening rule[ Validity of the proposed method is shown through numerical examples[ Þ 0888 Elsevier
Science Ltd[ All rights reserved[

0[ Introduction

Under cyclic bending with stepwisely increasing amplitude in the presence of a certain com!
pressive axial force\ it is known through experiments "Uetani and Nakamura\ 0872# that a cantilever
beam!column exhibits the following consecutive three classes of behavior as shown in Fig[ 0] "0#
convergent behavior to a symmetric steady!state\ in which a pair of the de~ected con_gurations at
load reversals is symmetric with respect to the initial member axis^ "1# convergent behavior to an
asymmetric steady!state\ where the de~ected shapes involve a certain anti!symmetric mode^ "2#
divergent behavior\ which is referred to as cyclic instability in this paper\ where the deformation
grows proportionally or exponentially with respect to the number of cycles[ The concepts\ called
the symmetry limit and the steady!state limit\ were introduced as the critical steady states that
bound these three classes of behavior[ The symmetry limit is the critical steady state at which
transition from the symmetric steady state to the asymmetric steady state occurs[ The steady!state
limit is the critical steady state beyond which the beam!column will no longer exhibit any convergent
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Fig[ 0[ The symmetry limit and the steady!state limit of a cantilever beam!column[

behavior[ To predict the symmetry limit and the steady!state limit\ the symmetry limit theory and
the steady!state limit theory were developed\ respectively "Uetani and Nakamura\ 0872^ Uetani\
0873^ Uetani\ 0878#[

It might be thought that the symmetry limit and the steady!state limit can be found by applying
the previously established theories[ Nevertheless\ none of them are directly applicable for the
following reasons] "0# plastic buckling theory "Shanley\ 0836^ Hill\ 0847^ Bazant and Cedolin\
0880#] the symmetry limit and the steady!state limit are phenomenologically and conceptually
di}erent from the critical point\ such as a branching point or a limit point\ of the equilibrium path[
In other words\ the cyclic instability may take place without passing these critical equilibrium
points^ "1# shakedown theory and its extensions] the symmetry limit and the steady!state limit are
observed under the strong e}ect of geometrical nonlinearity[ In the classical shakedown theory
"Koiter\ 0859^ Ko�nig\ 0876#\ however\ geometrical nonlinearity is completely neglected[ Several
papers "Maier\ 0861^ Nguyen et al[\ 0872^ Siemaszko and Ko�nig\ 0874^ Weichert\ 0875^ Gross!
Weege\ 0889^ Pycko and Ko�nig\ 0880^ Stumpf\ 0882^ Polizzotto and Borio\ 0885# extended the
classical shakedown theory by taking the geometrical nonlinearity into account[ Nonetheless the
extended shakedown theories\ except the theory by Stumpf "0882# which essentially requires a
numerical response analysis\ are not valid when compressive stresses and:or large deformations
have strong in~uence on the structural response^ "2# numerical methods for response analysis] it is
possible to bound convergence and divergence of plastic deformations by tracing all loading
histories with response analysis "see e[g[ Maier et al[\ 0882#[ But a number of parametric analyses
are required for bounding the structural responses[ Moreover\ the parametric analyses will never
lead to any theoretical condition similar to that for the Euler load[

On the other hand\ in the symmetry limit theory and the steady!state limit theory\ these two
limits are found based on the following concepts[ First\ a steady state is considered as a point in a
special space schematically illustrated in Fig[ 1[ Second\ the sequence of these points\ generated
under an idealized cyclic loading program with continuously increasing amplitude\ is regarded as
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Fig[ 1[ The equilibrium!state space and the steady!state space[

a continuous path[ This path is called the steady!state path[ Third\ the symmetry limit and the
steady!state limit are found\ respectively\ as the _rst branching point and the _rst limit point of
the steady!state path as shown in Fig[ 2[ Since only the sequence of the steady states is traced\
there is no need for tracing the transient process between any pair of two adjacent steady states[

Fig[ 2[ The symmetry limit and the steady!state limit in a steady!state plane[
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Furthermore\ no parametric analysis is needed to detect the two limits because they are predicted
as the critical points of the steady!state path[

For a few classes of structures\ the symmetry limit theory and the steady!state limit theory have
been applied[ It was shown that severe cyclic instability is induced when the de~ection amplitude
is in excess of the symmetry limit or the steady!state limit "Uetani\ 0873\ 0880#[ In those studies\
however\ only simple structures\ e[g[ a cantilever beam!column or a unit frame\ were treated for
which analytical solutions can be derived[ Hence\ to investigate the limit states of more complex
and practical structures\ which generally do not have a symmetry limit if they do not have a
symmetric shape\ it is necessary to establish a method for predicting the steady!state limit using
an appropriate _nite element method[

The purpose of this paper is to present a new method for _nding the steady!state limit of
elastoplastic trusses\ which are one of the simplest _nite!dimensional structures\ subjected to initial
constant loads and subsequent cyclic loads[ In the following sections\ governing equations are
described _rst[ Then the fundamental concepts of the steady!state limit theory are shown[ Next\
using the Taylor!series expansion\ a new incremental theory is formulated for tracing the steady!
state path[ Finally\ validity of the proposed method is demonstrated through numerical examples[
For simplicity\ our consideration is restricted to the case in which dynamic and thermal e}ects can
be neglected[ In addition\ the scope of this paper is limited to an elastic shakedown region because
the problem becomes much more complicated when plastic shakedown occurs in the trusses[
Throughout this paper\ as referred in recent papers "see e[g[ Maier et al[\ 0882#\ elastic shakedown
or classic shakedown means a cyclic and fully elastic structural response after some history of
plastic deformations[ And plastic shakedown is so called alternating plasticity\ in which plastic
deformations are included in steady cycles[

1[ Governing equations

1[0[ Analytical model

Consider a space truss with M elements and N nodes[ Compatibility conditions\ equilibrium
conditions and constitutive relations are given for an element shown in Fig[ 3[ By assembling the
equilibrium equations for the element\ we have those for the total system[ Note that buckling of
the element is ruled out though buckling of a global type is taken into account using a nonlinear
strainÐdisplacement relation[

We measure stresses and strains using the Total Lagrangian formulation "see e[g[ Cris_eld\ 0880^
Bathe\ 0885#[ Assumptions of large displacementsÐsmall strains are employed[ GreenÐLagrangian
strain o is expressed as

o �
L1−L1

9

1L1
9

"0#

where L and L9 are the current length and the initial length of the element\ respectively[ The
relations between the current length L and the nodal displacement ui is written as

L1 �"x3−x0#
1¦"x4−x1#

1¦"x5−x2#
1 "1#
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Fig[ 3[ A space truss element[

xi � x9
i ¦ui^ i � 0\ [ [ [ \ 5 "2#

in which xi and x9
i indicate the current position and the initial position of the nodes at the two

ends\ respectively\ as illustrated in Fig[ 3[
The principle of virtual work for the element is given by

fidui � gV

sdo dV � AL9s
1o

1ui

dui "3#

where fi is the nodal force\ dui is the virtual nodal displacement\ V is the initial volume\ s is the
second PiolaÐKirchho} stress\ do is the virtual strain\ and A is the initial cross sectional area[ Note
that the summation convention is used only for the subscripts i\ j and k throughout this paper[
Since the virtual work eqn "3# should be satis_ed for any dui\ we obtain the equilibrium equation

fi � AL9s
1o

1ui

[ "4#

As a uni!axial constitutive relation for the truss element\ we use a bi!linear kinematic hardening
rule shown in Fig[ 4[ In terms of Young|s modulus E\ the tangent modulus after yielding Et\ the
initial tensile yield stress sy\ and the plastic strain op\ the constitutive law is expressed as follows]

s � E"o−op# in the elastic and unloading ranges\ "5#

s � Eto¦s¹ y for the plastic loading in tension\ "6#

s � Eto−s¹ y for the plastic loading in compression "7#

where s¹ y �"0−Et:E#sy[

1[1[ Cyclic responses

For later formulation of the steady!state limit theory\ we must examine all the possible types of
the cyclic responses in the stressÐstrain plane[ The possible cyclic responses are classi_ed into four
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Fig[ 4[ A bi!linear kinematic hardening rule[

Fig[ 5[ Possible types of cyclic responses[

di}erent types E\ C\ T and P as shown in Fig[ 5\ where the superscripts t and c indicate the state
variables\ such as stresses\ strains\ and displacements\ at strain reversals in tension and compression\
respectively[ In terms of "ot\ st# and "oc\ sc#\ the cyclic responses can be uniquely described as]

st � E"ot−ot
p#\ "8#

sc � E"oc−oc
p#\ "09#

for type E\ which represents a purely elastic response or an elastic shakedown state[

st � Eto
t¦s¹ y\ "00#

sc �"Et−E#ot¦Eoc¦s¹ y "01#

for type T\ which is the elastic shakedown state whose maximum stress reaches the tensile yield
stress[

st � Eot¦"Et−E#oc¦s¹ y\ "02#
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sc � Eto
c−s¹ y "03#

for type C\ which represents the elastic shakedown state that starts from and reaches the com!
pressive strain hardening line[ And

st � Eto
t¦s¹ y\ "04#

sc � Eto
c−s¹ y "05#

for type P\ which indicates the plastic shakedown state[ Though all the possible types are shown
here\ the type P is not considered in this paper because the discussion is limited to the elastic
shakedown region as mentioned in Introduction[

Note that the plastic strain op is eliminated in eqns "01# and "02#[ For type T\ st is expressed in
two ways using eqns "5# and "6#\ while sc is written using only eqn "5#[ The plastic strains at the
strain reversals are eliminated using these three expressions and the relation

ot
p � oc

p[ "06#

For type C\ the plastic strains can be eliminated similarly[

2[ Fundamental concepts

2[0[ Loadin` conditions

The truss is subjected to initial constant loads l9PÞ9 and subsequent cyclic loads lcPÞc[ Here\ l

and PÞ denote the load factor and the constant vector\ respectively[ The subscripts 9 and c indicate
that the variables refer to the constant loads and to the cyclic loads\ respectively[ External forces
and:or forced displacements are applied as the external loads[ In other words\ nodal forces and:or
nodal displacements are included in PÞ according to the boundary conditions[ The load factor lc is
varied between the maximum value lI

c � c and the minimum value lII
c � −c in a cycle\ where c

denotes the amplitude of lc[ The equilibrium states at which lc � lI
c and lc � lII

c are called GI state
and GII state\ respectively[ The superscripts I and II indicate that the state variables refer to those
for the GI and GII states\ respectively[

Let us de_ne the cyclic loading program[ As a preliminary program\ consider a cyclic loading
program shown in Fig[ 6"a#[ In the program\ the loading cycle is repeated as many times as
necessary for the truss to converge to a steady state[ After convergence\ a small increment Dc is
added[ A sequence of the steady states is generated under the cyclic loading program as shown in
Fig[ 1[ By taking the limit Dc : 9 as illustrated in Fig[ 6"b#\ the sequence of the points can be
considered as a continuous path as depicted in Fig[ 1"b#[ The continuous path is called steady!
state path[ The steady!state path is de_ned by a monotonically increasing parameter t\ called
steady!state path parameter[

2[1[ Hypotheses

To formulate directly the sequence of the steady states in terms of the state variables for GI and
GII\ the following hypotheses are introduced]
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Fig[ 6[ Idealized cyclic loading programs[

"H1�# All the state variables for GI and GII are continuous and piecewise di}erentiable functions
of t[

"H2�# For all elements\ strain reversals occur only at GI or GII[

The hypotheses "H1�# and "H2�# are the alternative statements of the hypotheses "H1# and
"H2#\ respectively\ introduced by Uetani and Nakamura "0872#[ Note that the hypothesis "H2�#
is applied not for the transient response between the two consecutive steady states but for the
steady!state response after convergence[

2[2[ Outline

Based on these hypotheses\ the procedures for _nding the steady!state limit are outlined as
follows]

"0# A steady!state is uniquely described by a set of the state variables for GI and GII[
"1# The steady!state path is traced based on an incremental theory for variation of steady states\

where the state variables for GI and GII are di}erentiated with respect to t[
"2# The steady!state limit is found as the _rst limit point of the steady!state path[

3[ Formulation

3[0[ Incremental theory for variation of steady state

When all the state variables are known for the current steady states at t � th\ the problem is
then to determine those for a neighboring steady state at t � th¦0[ Let Dt � th¦0−th be an
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increment of the steady!state path parameter t[ Then\ on the basis of the hypothesis "H1�#\ the
state variables for GI at t � th¦0 are expressed using the Taylor!series expansion as]

UI "th¦0# � UI "th#¦UþI "th#Dt¦
0

1
UÝI "th#Dt1¦= = = \ "07#

FI "th¦0# � FI "th#¦FþI "th#Dt¦
0

1
FÝI "th#Dt1¦= = = \ "08#

EI "th¦0# � EI "th#¦EþI "th#Dt¦
0

1
EÝI "th#Dt1¦= = = \ "19#

EI
p"th¦0# � EI

p"th#¦EþI
p"th#Dt¦

0

1
EÝI

p"th#Dt1¦= = = \ "10#

SI "th¦0# � SI "th#¦SþI "th#Dt¦
0

1
SÝI "th#Dt1¦= = = "11#

where F and U are the nodal force vector and the nodal displacement vector\ respectively\ with 2N
components\ and E\ Ep and S denote the strain vector\ the plastic strain vector\ and the stress
vector\ respectively\ with M components[ The super dot indicates the di}erentiation with respect
to t[ The variables for GII are expressed by replacing the superscript I with II[

For simple presentation of the incremental theory\ only the formulation is shown here in which
the terms higher than or equal to the second order are neglected[ However\ since it is desirable to
use a more accurate solution method for this highly nonlinear system\ the formulation including
the higher!order derivatives is presented in Appendix A[

3[1[ Rate forms of `overnin` equations

By di}erentiating all the governing equations for GI and GII with respect to the steady!state
parameter t\ we derive the rate forms of the governing equations[ The rate forms of the governing
equations are simply called the rate equations in this paper[ Di}erentiation of the compatibility
conditions "0#Ð"2# yields

o¾I �
1oI

1uI
i

u¾ I
i \ "12#

o¾II �
1oII

1uII
i

u¾ II
i [ "13#

Recall that summation convention is used only for the subscripts i\ j and k which are varied from
0 to 5[ Rate forms of the equilibrium conditions are given by

f¾Ii � AL9 0s¾ I
1oI

1uI
i

¦sI
11oI

1uI
i 1uI

j

u¾ I
j1\ "14#

f¾IIi � AL9 0s¾ II
1oII

1uII
i

¦sII
11oII

1uII
i 1uII

j

u¾ II
j 1[ "15#

Di}erentiating the stressÐstrain relations "8#Ð"01#\ the stress rateÐstrain rate relations can be
expressed for the strainÐreversal points in the form of
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Table 0

Stress rateÐstrain rate relations for strainÐreversal points

Type Strain rate Ctt Ctc Cct Ccc

E E 9 9 E

T o¾t − 9 Et 9 Et−E E

T o¾t ³ 9 E 9 9 E

C o¾c ¾ 9 E Et−E 9 Et

C o¾c × 9 E 9 9 E

s¾ t � Ctto¾t¦Ctco¾c\ "16#

s¾ c � Ccto¾t¦Ccco¾c\ "17#

where Ccc\ Cct\ Ctc and Ctt are the coe.cients that should be chosen according to the current type
of the cyclic response[ And the signs of the strain rates are shown in Table 0 and Fig[ 7[ It may be
worth noting that the stress rateÐstrain rate relations are derived by di}erentiating eqns "8#Ð"03#
in the proposed method[ In contrast\ they are obtained by di}erentiating eqns "5#Ð"7# in the
conventional methods for response analysis[

To derive the rate equations for GI and GII\ eqns "16# and "17# for the strainÐreversal points are
transformed into those for the loadÐreversal points by replacing their superscripts on the basis of
the hypothesis "H2�#[ The superscripts c and t are replaced by I and II\ respectively\ or they are
replaced with II and I\ respectively[ After replacing the superscripts\ we have

Fig[ 7[ Possible variation of cyclic responses[
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s¾ � C IIo¾I¦C I IIo¾II\ "18#

s¾ II � C II Io¾I¦C II IIo¾II[ "29#

Substituting eqns "12#\ "13#\ "18# and "29# into eqns "14# and "15#\ we have the rate equations
for each element

f¾Ii � kII
ij u¾

I
j¦kI II

ij u¾ II
j \ "20#

f¾IIi � kII I
ij u¾ I

j¦kII II
ij u¾ II

j \ "21#

where

kII
ij � AL9 0C II

1oI

1uI
i

1oI

1uI
j

¦sI
11oI

1uI
i 1uI

j1\ "22#

kI II
ij � AL9C

I II
1oI

1uI
i

1oII

1uII
j

\ "23#

kII I
ij � AL9C

II I
1oII

1uII
i

1oI

1uI
j

\ "24#

kII II
ij � AL9 0C II II

1oII

1uII
i

1oII

1uII
j

¦sII
11oII

1uII
i 1uII

j 1[ "25#

By assembling eqns "20# and "21# throughout the whole structure\ the following rate equations are
derived for the total system]

FþI � KIIUþI¦KI IIUþII\ "26#

FþII � KII IUþI¦KII IIUþII "27#

where KII\ KI II\ KII I and KII II are the coe.cient matrices of the nodal displacement rates[ By
specifying the value of c¾ and by using the boundary conditions\ we have a system of 1×2N
simultaneous linear equations[

3[2[ Consistent set of stress rateÐstrain rate relations

When an element exhibits the type T or C in the current steady state\ the coe.cients of the strain
rates should be chosen according to the signs of the strain rates as shown in Table 0 and Fig[ 7[
Therefore\ for all the elements exhibiting the type T or C\ we should choose a set of the coe.cients
that are consistent with the signs of the resulting strain rates[ Note that the term consistent used
here has no relation with the one used in the integration algorithms for the numerical response
analysis of elastoplastic solids or structures "see e[g[ Cris_eld\ 0886#[

To _nd the consistent set of the coe.cients\ we employ a trial and error approach\ which is also
used in the conventional response analysis "Yokoo et al[\ 0865#[ In the trial and error approach\
_rst\ the signs of the strain rates EþI and EþII are assumed to be identical to those in the last step[
Then\ the coe.cients Ccc\ Cct\ Ctc and Ctt are determined according to the assumptions\ and the
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rate equations are constructed[ After the rate equations are solved and EþI and EþII are calculated\
the consistency is checked between the assumed and the resulting signs of the strain rates for all
the elements exhibiting the type T or C[ If the signs are not consistent\ the assumed signs are
reversed[ This procedure is continued until all the resulting signs of the strain rates are consistent
with the assumed ones[

3[3[ Termination conditions for incremental steps

When the type of the stressÐstrain cyclic response changes\ a di}erent type of stress rateÐstrain
rate relation should be used in eqns "18# and "29#[ The step length Dt is\ therefore\ determined
considering the conditions for the transition of the type of the stressÐstrain cyclic response[ Let syt

and syc denote the subsequent yield stresses in tension and compression\ respectively[ Then\ for
every element\ Dt is calculated using the following conditions]

st"th¦0# � syt\ "28#

sc"th¦0# � syc\ "39#

st"th¦0#−sc"th¦0# � syt−syc � 1sy "30#

where st"th¦0# � st"th#¦s¾ t"th#Dt and sc"th¦0# � sc"th#¦s¾ c"th#Dt in the linear approximation[
Here\ the eqns "28#Ð"30# describe the conditions for the transition of the cyclic response for E:
T\ E : C\ and E\ C or T : P\ respectively[ Examples of the transition are given in Fig[ 8[ Note
that the subsequent yield stresses are expressed in terms of the plastic strain at the current steady
state as

Fig[ 8[ Examples of transition of cyclic responses] "a# E : T and "b# C: P[
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syt �
EEt

E−Et

op"th#¦sy\ "31#

syc �
EEt

E−Et

op"th#−sy[ "32#

Besides the conditions above\ the step length Dt should be kept small enough to prevent excessive
accumulation of truncation errors[ Hence the step length Dt is selected as the smallest value among
the values calculated from the conditions "28#Ð"30# and the speci_ed maximum allowable value
Dt¹max[ When Dt is determined by "28# or "39#\ the stress rateÐstrain rate relations are changed in
the next step[ If "30# is used to determine Dt\ the incremental analysis is terminated[

3[4[ Steady!state limit condition

Now\ all the _rst!order derivatives and the step length Dt have been obtained[ Substituting Dt

and the _rst!order derivatives into eqns "07#Ð"11#\ we have all the state variables at t � th¦0[
Repeating these procedures\ the steady!state path is traced incrementally[

As mentioned before\ the steady!state limit is found as the _rst limit point of the steady!state
path as shown in Fig[ 2[ The steady!state limit condition is given as

c¾ ¾ 9[ "33#

Note that\ to _nd the limit point and to trace the steady!state path after the limit point\ a procedure
should be employed similar to the displacement control schemes "Yokoo et al[\ 0865^ Cris_eld\
0880#[

4[ Numerical examples

The proposed method has been developed on the basis of the two hypotheses[ In addition\ the
steady!state limit is predicted regardless of the transient process between two consecutive steady
states[ Hence validity of the two hypotheses and the steady!state limit should be examined[ For
this purpose\ steady!state limit analysis and conventional response analysis\ in which the entire
history is traced\ are carried out for a two!bar arch truss and a ten!bar cantilever truss[

4[0[ Steady!state limit analysis

Initial shapes\ boundary conditions and loading conditions of both plane trusses are illustrated
in Fig[ 09[ The initial constant forces and the subsequent cyclic forced displacements are denoted
by l9FÞ9 and lcUÞc\ respectively[ Here\ FÞ9 � 8[796×092 N and UÞc � 0 cm[ The cross!sectional areas
of the two!bar truss are A"0# � 0 cm1 and A"1# � 1 cm1\ and those of the ten!bar truss are as follows]
A"0# � A"3# � A"4# � 00 cm1\ A"1# � A"2# � 0[0 cm1\ A"5# � A"8# � A"09# � 09 cm1\ and A"6# � A"7# � 0
cm1[ Both trusses obey a bi!linear kinematic hardening rule with E � 0[850×091 GPa\ Et � 9[90
E\ and sy � 1[831×091 MPa[ Throughout the steady!state limit analysis\ higher!order terms up to
the second order are incorporated "see Appendix A#\ and the maximum allowable step lengths are
set to Dt¹max � 9[94 and Dt¹max � 9[1 for the two!bar truss and the ten!bar truss\ respectively[



K[ Uetani\ Y[ Araki : International Journal of Solids and Structures 25 "0888# 2940Ð29602953

Fig[ 09[ The geometry of "a# a two!bar truss and "b# a ten!bar truss[

Let lyFÞ9 and lbFÞ9 denote the initial yield load and the initial buckling load\ respectively\ for the
trusses subjected to only l9FÞ9[ As the results of the conventional response analysis\ we have
ly � lb � 9[6366 for the two!bar truss\ and ly � 29[85 and lb � 39[27 for the ten!bar truss[ Note
that the term buckling means that the lowest eigenvalue of the tangent sti}ness matrix for the
Hill|s linear comparison solid "Hill\ 0847^ Bazant and Cedolin\ 0880# becomes non!positive in
tracing the equilibrium path[ In Hill|s linear comparison solid\ any yielding element is assumed to
behave with their tangent sti}ness for plastic loading even if its strain changes in an unloading
direction[

Figures 00 and 01 illustrate the results of the steady!state limit analysis performed under di}erent
initial constant loads[ The normalized load factor l9:lb is parametrically changed between 9 and 0
with the increments of 9[994 and 9[90 for the two!bar truss and the ten!bar truss\ respectively[ The
solid line represents the steady!state limit cssl and the dashed line shows the boundary between the
elastic shakedown region and the plastic shakedown region[

4[1[ Response analysis

It is very di.cult to realize the idealized cyclic loading program employed in the steady!state
limit analysis[ For the veri_cation\ therefore\ we use the following two realistic loading programs
shown in Fig[ 02] "0# STIDAC program[ The amplitude c of the forced displacement is increased
every half cycle with an increment Dc¹ from zero to a speci_ed value c¹ max\ then c is kept constant
in the following cycles^ "1# STIDAD program[ Throughout all cycles\ c is kept a constant value
c¹ [ The values of c¹ max are set so as to be just below and above that of cssl[ The values of c¹ are set
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Fig[ 00[ The elastic shakedown boundaries for the two!bar truss[

Fig[ 01[ The elastic shakedown boundaries for the ten!bar truss[

similarly[ Consequently\ the response analysis is performed four times for all the values of cssl[
Formulation for the response analysis and criteria for convergence and divergence are shown in
Appendix B[

For both of the trusses\ the steady!state limit predicted by the proposed method is in good
agreement with the results of the response analysis performed under the STIDAC program with
c¹ max �"029[990#cssl and Dc¹ � 9[990cssl[ Namely\ the convergence is observed if c¹ max ³ cssl and\
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Fig[ 02[ The cyclic loading programs] "a# STIDAC and "B# STIDAD[

otherwise\ divergence is obtained[ Obviously\ the program STIDAC become closer to the idealized
program employed in the steady!state limit analysis as Dc is made smaller[ It may be therefore
concluded that the steady state limit obtained by the proposed method is directly veri_ed[

On the other hand\ under the STIDAD program with c¹ �"029[990#cssl\ the ten!bar truss
converges to elastic shakedown state in the hatched range in Fig[ 01 regardless of c¹ × cssl[ However\
such inconsistent results are obtained only when c¹ × cssl[ From these results\ it is observed that
the value of the steady!state limit cssl\ de_ned for the idealized cyclic loading program\ is smaller
than the limiting value of c¹ that bounds convergence and divergence under the STIDAD program[

In Fig[ 03\ the relation between the vertical displacement U I
0 and the number of the cycles is

plotted for the two!bar truss subjected to the STIDAD program with the four constant amplitudes
c¹ :cssl � 9[79\ 9[88\ 0[90 and 0[94 under the initial loads l9:lb � 9[4[ It can be observed from Fig[
03 that cyclic instability occurs if the amplitude c is above the predicted value of cssl\ whereas U I

0

converges otherwise[
Figure 04 illustrates the comparison of the results for the ten!bar truss obtained by the steady!

state limit analysis and the response analyses performed under various cyclic loading programs
under the initial constant load l9:lb � 9[74[ This _gure shows the path!dependence of the limiting
values that bound convergence and divergence on loading history[ In the _gure\ U1 is the dis!

Fig[ 03[ Convergence and divergence of U I
0 for the two!bar truss "l:lb � 9[4#[
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Fig[ 04[ Path dependence of U I
0 on loading history for the ten!bar trusses "l:lb � 9[74#[

placement of node 4 for X0 direction[ The solid line indicates the steady!state path[ The dashed
line shows the variation of U I

1 with respect to c under the STIDAC program with Dc¹ � 9[990cssl

and a su.ciently large value of c¹ max[ The circular symbols plot U I
1 in the steady states under the

STIDAC programs with Dc¹ � 9[990cssl and various values of c¹ max[ The square symbols indicate
U I

1 after convergence under the STIDAD programs with the values of c¹ corresponding to the
values of c¹ max[ Good agreement between the steady!state path and the circular points demonstrates
the validity of the hypotheses "H1�# and "H2�#[

5[ Conclusions

A new method has been presented for predicting the steady!state limit of elastoplastic trusses
subjected to quasi!static cyclic loads in the presence of constant loads[ By applying the proposed
method\ we can _nd the steady!state limit of arbitrary shaped frames with truss elements[ In the
proposed method\ there is no need for tracing the transient process between consecutive two steady
states\ and no parametric analysis is needed for _nding the steady!state limit[ The proposed method
is therefore much more e.cient than the conventional methods for numerical response analysis[

Through the numerical examples\ the following conclusions have been obtained]

"0# Good agreement is observed between the results of the steady!state limit analysis and those of
the conventional response analysis when the loading conditions for these analyses are close
enough[

"1# The limiting values below which elastic shakedown occurs depend on the loading history[
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Obviously\ Melan!type or path!independent shakedown criterion cannot be extended to such
cases[

"2# The steady!state limit\ de_ned under an idealized cyclic loading program with continuously
increasing amplitude\ is smaller than the limiting values obtained by the response analysis
performed under the two typical and realistic cyclic loading programs[

Extension of the proposed method to the plastic shakedown region is our next subject[ Further
extension to the three!dimensional continua remains as a subject of our future research[

Appendix A] Formulation with higher!order derivatives

A formulation with higher!order derivatives is presented for the steady!state limit analysis[ By
using the higher!order derivatives\ terminal points of incremental steps can be found with the
desired accuracy[ We derive here only the second!order derivatives for brevity[ But the higher!
order derivatives can be obtained similarly[

Di}erentiation of the rate equations "12#Ð"29# with respect to the steady!state path parameter t

yields the second!order perturbation equations as follows]

o�I �
1oI

1uI
i

u� I
i¦

11oI

1uI
i 1uI

j

u¾ I
i u¾

I
j "A0#

for the compatibility conditions\

f�Ii � AL9 6s� I
1oI

1uI
i

¦sI
11oI

1uI
i 1uI

j

u� I
j¦1s¾ I

11oI

1uI
i 1uI

j

u¾ I
j7 "A1#

for the equilibrium conditions\ and

s� I � C IIo�I¦C I IIo�II "A2#

for the stressÐstrain relations[ Note that CþII � CþI II � 9 because the bi!linear constitutive relation
is assumed[

From eqns "A0#Ð"A2#\ we have the second!order perturbation equations for each element

f�Ii � kII
ij u�

I
j¦kI II

ij u� II
j ¦f¼Ii \ "A3#

f¼Ii � AL9

1oI

1uI
i 0C

II
11oI

1uI
j 1uI

k

u¾ I
ju¾

I
k¦C I II

11oII

1uII
j 1uII

k

u¾ II
j u¾ II

k 1¦1AL9s¾
I

11oI

1uI
i 1uI

j

u¾ I
j "A4#

in which a hat indicates the variables expressed in terms of the _rst!order derivatives[ Note that
the coe.cients kII

ij and kI II
ij are identical to those in eqn "20#[ We have the perturbation equations

for the GII state by replacing the superscripts I with II and II with I\ respectively[ Assembling the
perturbation equations for the elements leads to the second!order perturbation equations for the
total system

FÝI � KIIUÝI¦KI IIUÝII¦F
I\ "A5#
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FÝII � KII IUÝI¦KII IIUÝII¦F
II[ "A6#

Note again that the coe.cient matrices are the same as those in the rate equations "26# and "27#[
These 1×2N simultaneous linear equations "A5# and "A6# are to be solved using the boundary
conditions after the value of c� is speci_ed[

When the derivatives are employed up to the second order\ the termination conditions "28#Ð"30#
of the incremental step become quadratic equations of the step length Dt\ while the conditions are
linear equations when only the _rst derivatives are used[ Besides these termination conditions\ we
must consider the conditions

o¾t"th¦0# � o¾t"th#¦o�t"th#Dt � 9\ "A7#

o¾c"th¦0# � o¾c"th#¦o�c"th#Dt � 9 "A8#

for the transitions T : E and C : E\ respectively[
Substituting the step length and the derivatives up to the second order into eqns "07#Ð"11#\ we

obtain the values of the state variables at t � th¦0[

Appendix B] Formulation and convergence criteria for response analysis

As a solution method for the response analysis\ the incremental perturbation method "Yokoo
et al[\ 0865# is used in this paper[ In this method\ the equilibrium path is traced using the higher!
order derivatives up to the desired order with respect to the equilibrium path parameter t[ Hence
yielding and unloading can be predicted with the desired accuracy[

Di}erentiating the kinematic relations "0#Ð"2#\ we obtain the following equations

o? �
1o

1ui

u?i "B0#

where prime indicates partial di}erentiation with respect to t[ The equilibrium condition is written
as

f?i � AL9 0s?
1o

1ui

¦s
11o

1ui 1uj

u?j1[ "B1#

The constitutive relation is expressed as

s? � Co? "B2#

in which

C � E in the elastic range\ "B3#

C � Et\ o? − 9 for the loading response in tension\ "B4#

C � E\ o? ³ 9 for the unloading response in tension\ "B5#

C � Et\ o? ¾ 9 for the loading response in compression\ "B6#
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C � E\ o? × 9 for the unloading response in compression[ "B7#

Di}erentiating eqn "4# with respect to t\ we have the equations for each element

f?i � kiju?j\ "B8#

kij � C
1o

1ui

1o

1uj

¦s
11o

1ui 1uj

[ "B09#

By assembling the equations for each element\ we obtain the equations for the total system as

F? � KU?[ "B00#

Note that we should _nd the set of tangent sti}nesses that are consistent with the resulting signs
of E?[ Di}erentiation of eqns "B0#Ð"B00# leads to higher!order perturbation equations[ Solving
the perturbation equations\ we obtain the higher!order derivatives[ An increment is terminated
when yielding\ unloading or load reversal occurs[ In addition\ the step length Dt is kept smaller
than the maximum allowable value Dt¹max speci_ed for preventing excessive accumulation of the
truncation errors[ Repeating these procedures\ the equilibrium path is traced step by step[

In the numerical examples\ the higher!order terms are employed up to the second order[ The
response is regarded to be divergent if buckling occurs or if one of the absolute maximum value
of U exceeds the speci_ed value UÞmax[ On the other hand\ the response is judged to be convergent
when the following condition is satis_ed[

max b
Un"l¦0#−Un"l#

Un"l# b³ e¹ "n � 0\ 1\ [ [ [ \ 2N# "B01#

where Un is the nth component of U\ subscript l indicates the number of cycles and e¹ is the speci_ed
value of the relative error[ These values are set to be UÞmax � 4 cm\ Dt¹max � 9[990\ and e¹ � 0×09−3

for the two!bar truss\ and UÞmax � 79 cm\ Dt¹max � 9[1\ and e¹ � 0×09−5 for the ten!bar truss[
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